The Biomarkers Consortium
Metabolic Disorders Steering Committee
Sarcopenia Consensus Definition Project

Maria Vassileva, Ph.D.
Senior Scientific Program Manager

March 28, 2014: PRO Measure Development in Sarcopenia
Bethesda, MD
FNIH Overview

- Sole organization authorized by the U.S. Congress to support the mission of the NIH by creating and managing public-private partnerships
- 501(c)(3) non-profit organization
 - Raised >$560 million to support >400 projects
 - 100 currently active programs
- Non-governmental
 - Independent Board of Directors
 - NIH Director/FDA Commissioner *ex-officio* FNIH Board Members
- 94 cents of every $ directly supports research programs
- Consistently rated highly on Charity Navigator
The Role and Function of FNIH

- Create innovative public-private biomedical partnerships that complement NIH priorities and advance the public health
- Partner with corporations, foundations, academia, federal agencies, and philanthropic individuals
- Serve as “honest broker”, providing a neutral forum able to engage all partners
- Enable efficient, effective collaboration
- Structure flexible donor relationships
- Manage grants, contracts, and projects efficiently
Major FNIH Research Partnerships

<table>
<thead>
<tr>
<th>Project</th>
<th>Amount</th>
<th>Partners and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gates Foundation Projects</td>
<td>$300M</td>
<td>Partner: Bill & Melinda Gates Foundation (6 grants in global health, AIDS, tuberculosis and malnutrition)</td>
</tr>
<tr>
<td>Alzheimer’s Disease Neuroimaging Initiative (ADNI & ADNI 2)</td>
<td>$50M</td>
<td>Partners: NIA/NIBIB & 19 companies/2 non-profits</td>
</tr>
<tr>
<td>Genetic Association Information Network (GAIN)</td>
<td>$26M</td>
<td>Partners: NHGRI, NLM & Pfizer, Affymetrix, Broad Institute, Perlegen Sciences</td>
</tr>
<tr>
<td>The Biomarkers Consortium</td>
<td>$65M</td>
<td>Partners: NIH, FDA, CMS, BIO, PhRMA, biopharmaceutical industry, non-profits</td>
</tr>
<tr>
<td>Accelerating Medicines Partnership (AMP)</td>
<td>$120M</td>
<td>Partners: NIH OD, NIA, NIDDK, NIAMS, NIAID, NHGRI, Abbott, Biogen Idec, BMS, Eli Lilly, GSK, JNJ, Merck, Pfizer, Sanofi</td>
</tr>
</tbody>
</table>
The Biomarkers Consortium

Fosters the exchange of knowledge and expertise among industry, academic and government leaders

- Qualifies biomarkers for specific applications in diagnosing disease, predicting therapeutic response, and improving clinical practice

- Employs rigorous, inclusive governance and project management with clearly defined goals and milestones

- Facilitate cross-sector partnerships across a broad range of disease and therapeutic areas

- Provides information to inform regulatory decision-making

- Enables pre-competitive sharing of data, resources, and expertise across stakeholders to collaboratively address unmet medical needs
Biomarkers Consortium Governance Structure

Executive Committee
NIH / FDA / CMS / industry / FNIH

Cancer Steering Committee
Inflammation & Immunity Steering Committee
Metabolic Disorders Steering Committee
Neuroscience Steering Committee

Multiple Project Teams (including the Sarcopenia I and II Projects)
Representatives from NIH, FDA, Industry, Subject Experts from Academia
Problem Statement

- Loss of muscle mass is common in aging and wasting conditions, and is associated with weakness, poor function and lower survival.

- This important clinical condition is currently poorly recognized.

- Multiple potential interventions exist to treat or prevent muscle mass loss.

- The field needs a clinical definition to proceed with specific regulation formulation.
The MDSC Sarcopenia Project (2010-2013)

Scope of the Problem

- Currently we are unable to identify patients that require treatment.

Clear and valid diagnostic criteria and outcome measures are needed to fulfill regulatory demands and support investments in testing interventions.

- In the US the number of older adults (≥ 65 years) is expected to double to 86.7 million near 2050 in the US.

- Expecting increased comorbidities and need for institutionalization.
The Sarcopenia Project (2010-2013)

The Ultimate Goal
Create an evidence-based definition by generating:

■ Clear and valid diagnostic criteria and outcome measures acceptable to clinicians, FDA, and health insurers, including CMS

■ Opportunities to develop and test potential interventions on low muscle mass and strength, to improve the health of older adults

■ Clinical recognition and practice guidelines for screening, diagnosis and management
Other Recent Sarcopenia Definitions

- European Working Group on Sarcopenia in Older People (EWGSOP)
 Cruz-Jentoft et al, 2010
 Low Muscle Mass (DXA ASM/ht2: ≤ 7.23 kg/m2 men, ≤ 5.67 kg/m2 women
 Low grip strength (< 30 kg men, < 20 kg women) OR **Gait Speed < 0.8 m/s**

- European Society of Parenteral and Enteral Nutrition Special Interest Groups (ESPEN)
 Muscaritoli et al, 2010
 Low Muscle Mass (<2 SD of 18-39 y, NHANES); **Gait Speed < 0.8 m/s**

- Society of Sarcopenia, Cachexia, and Wasting Disorders
 Morley et al, 2011
 Lean appendicular muscle mass < 2SD below healthy individuals age 18-30 y, same
 ethnicity; **Gait speed < 1 m/s OR walking distance < 400m in 6 minutes**

- International Working Group on Sarcopenia (IWG)
 Fielding et al, 2011
 Low appendicular mass relative to height (DXA ASM/ht2):<7.23kg/m2men &<5.67kg/m2
 women. **Gait Speed < 1m/s**

Questions Remaining

When is low lean mass empirically grounded to its relationship to strength and function?
Current Clinical Paradigm

Patient presents with poor physical function

What is the best measure of poor physical function?

Weakness?

What is the best measure of weakness?

Low Muscle Mass?

What is the best measure of muscle mass?

Low mass is possible cause of weakness

Look for other causes of poor performance

Look for non-mass causes of Poor Muscle Function
MDSC Sarcopenia Project Goals

- Use cross-sectional and prospective data from several aging studies to evaluate criteria for sarcopenia diagnosis, based on shared operational definitions of performance, strength, body composition (pooled analyses completed).

- Present findings to a broad professional audience for feedback and recommendations (Consensus Meeting, co-sponsored by FDA, FNIH and NIA took place on May 8-11, 2012 in Baltimore, MD).

- Publish findings and define a consensus/multi-stakeholder definition of clinically important sarcopenia (manuscripts ready for submission).
Data Pooled from Longitudinal Clinical Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Baseline sample size</th>
<th>Age range</th>
<th>gender</th>
<th>ethnicity</th>
<th># follow ups</th>
<th>Max follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cawthon MrOS</td>
<td>5995, almost all with DXA. First entrants 2000</td>
<td>64-100</td>
<td>All male</td>
<td>4.1% AA 2.1% Hispanic</td>
<td>Up to 6; most have at least 3</td>
<td>8.8 years</td>
</tr>
<tr>
<td>Dam Rancho Bernardo</td>
<td>2000 depending on study purpose and wave. Sample sizes for key measures varies. First study 1988</td>
<td>50-99</td>
<td>about 2/3 F</td>
<td>Mostly white; About 200-450 Hispanic and AA recruited 1995-2000</td>
<td>Up to 6</td>
<td>22 years</td>
</tr>
<tr>
<td>Sceppa Boston Puerto Rican Health Study</td>
<td>1449 First study entry 2004</td>
<td>45-75</td>
<td>70% F</td>
<td>All Puerto Rican</td>
<td>1</td>
<td>6 years</td>
</tr>
<tr>
<td>Kenney 6 clinical trials</td>
<td>About 700 in 6 clinical trials</td>
<td>60+</td>
<td>80% F</td>
<td>Small % AA and Hispanic</td>
<td>Up to 4</td>
<td>Up to 2 years</td>
</tr>
<tr>
<td>Alley InChianti</td>
<td>842 age 70+, 1154 total Study began 1998</td>
<td>20-90+</td>
<td>60% F</td>
<td>All white</td>
<td>3</td>
<td>9 years</td>
</tr>
<tr>
<td>McLean Framingham Original</td>
<td>861 with DXA</td>
<td>70+</td>
<td>2/3 F</td>
<td>White</td>
<td>Up to 7</td>
<td>18 years</td>
</tr>
<tr>
<td>McLean Framingham Offspring</td>
<td>2700 who are 50+ with DXA</td>
<td>50+</td>
<td>50% F</td>
<td>white</td>
<td>Up to 4</td>
<td>14 years</td>
</tr>
<tr>
<td>Harris/Newman Health ABC</td>
<td>3075</td>
<td>70-79</td>
<td>51% women</td>
<td>42% AA</td>
<td>Up to 6</td>
<td>12 years</td>
</tr>
<tr>
<td>Harris AGES</td>
<td>5762</td>
<td>65+</td>
<td>White</td>
<td>1</td>
<td>About 8 years</td>
<td></td>
</tr>
</tbody>
</table>

Data from various studies pooled for comprehensive analysis.
Strengths

- Our findings are generalizable because of the:
 - Large, diverse and well-characterized set of populations
 - Pooled sample had both genders, diversity of race/ethnicity, multiple geographic regions, and a range of health and functional states

- We have an explicit conceptual framework and did extensive sensitivity and cross-validation analyses

- A range of sensitivity + supplementary analyses was possible because:
 - Alternate measures of physical function, strength and body composition were used to evaluate whether findings would differ substantially using different cut points and measures

- Our primary indicator, gait speed<0.8m/s is associated with reduced survival and increased disability
Sarcopenia Project Accomplishments

Pooled data from multiple aging studies was used to develop preliminary evidence-based cutpoints for grip strength and lean body mass that are potentially clinically relevant.

1. The FNIH Sarcopenia Project: Rationale, Study Description and Recommendations (Studenski S, et al.)

2. Cut-points in grip strength for the clinical definition of slowness with weakness (Alley D, et al.)

3. Cut points for low appendicular lean mass identifying older adults with weakness (Cawthon P, et al.)

4. Criteria for clinically important weakness and reduced muscle mass and their longitudinal association with incident mobility disability and mortality (McLean R, et al.)

5. Consensus Definition Comparisons (Dam T, et al.)
The Sarcopenia Project Findings

Conclusions

- Through the Sarcopenia Project, evidence-based candidate criteria were established as follows:

 For men: grip strength (GSMAX) < 26 kg and an index of < 0.789 for appendicular lean mass adjusted for body mass (ALM_{BMI})
 For women: GSMAX < 16 kg and ALM_{BMI} < 0.512

- Based on this consensus, further biomarker analyses become possible in future clinical trials

- A series of five manuscripts submitted to the Journal of Gerontology Medical Sciences (JGMS) in 2013 and under review before publication
Sarcopenia Results Dissemination Strategy

- Publications of results as a series of papers in JGMS, Spring 2014

- Public announcements, webinar, conference to disseminate the findings of the research after the paper publications to be organized by NIA, NIH

- FNIH press-release currently planned

- Findings presented at the ASBMR Annual Meeting in October 2013 and as an Innovator Presentation at the Partnering for Cures Meeting, organized by Faster Cures in New York, NY in November 2013
Remaining Gaps

Questions to be Addressed in Follow Up Studies

■ Confirmation of the established criteria in populations with more severe mobility limitation

■ Taking comorbidities into consideration

■ Accounting for differences in measurement on Hologic and Lunar DEXA machines
Creating an Overarching Sarcopenia Initiative

Sarcopenia Future Project Goals

- Validate and confirm the predictive validity of the candidate criteria established by the first Sarcopenia Project through analysis of populations with higher levels of mobility limitation and with muscle wasting disorders
- Establish the reproducibility of repeated measures of body composition and demonstrate how changes in muscle mass affect function
The Methods Core Team

- Dawn Alley, PhD, University of Maryland
- Peggy Cawthon, PhD, California Pacific Medical Research Center
- Tien Dam, MD, Columbia University
- Tamara Harris, MD, NIA/NIH
- Anne Kenny, MD, University of Connecticut
- Maren Fragala, PhD, University of Central Florida
- Robert McLean, PhD, Harvard University
- Michelle Shardell, PhD, University of Maryland
- Kathy Peters, PhD, California Pacific Medical Research Center
- Rosaly Araujo, MD, PhD, NIA/NIH
- Luigi Ferruci, MD, NIA/NIH
- Jack Guralnik, PhD, University of Maryland
- Douglas Kiel, MD, PhD, Harvard University
- Steven Kritchevsky, PhD, Wake Forest University
- Dragos Roman, MD, CDER/FDA

The Sarcopenia Project Team

- Olivier Benichou, MD, Eli Lilly
- Julie Chandler, MD, Merck
- Shao-Lee Lin, PhD, Amgen
- Daniel Rooks, PhD, Novartis
- Suzette Pereira, PhD, Abbott Nutrition
- Jeffrey Zachwieja, PhD, Dairy Research Institute
- Evan Hadley, MD, NIA/NIH
- Judy Hannah, PhD, NIA/NIH
- Karen Mahoney, MD, CDER/FDA
- Ali Mohamadi, PhD, CDER/FDA
- Anne Newman, PhD, University of Pittsburgh
- Qian-Li Xue, PhD, Johns Hopkins University

Sarcopenia Project Team Chair
Stephanie Studenski, MD, NIA/NIH

Funding Support for this project provided by:
Abbott Nutrition, Amgen, Eli Lilly, Merck Research Labs, Novartis, The Dairy Research Institute, NIA, and FDA
Thank You

For more information and questions,
Email: mvassileva@fnih.org